专利摘要:
提供一種具有疏水性且吸濕速度不降低之有機EL元件用水分吸附劑及其製造方法。一種有機EL元件用水分吸附劑,其特徵在於:以表面具有烷氧化物層之氧化鈣粒子為主成分。又,一種有機EL元件用水分吸附劑之製造方法,其特徵在於:於醇(alcohol)的存在下對氧化鈣進行乾式粉碎後再進行乾燥處理。
公开号:TW201311561A
申请号:TW101124736
申请日:2012-07-10
公开日:2013-03-16
发明作者:渡邊高行;本明紘;三島拓也;佐野聰;植木明
申请人:宇部材料股份有限公司;
IPC主号:C04B35-00
专利说明:
有機EL元件用水分吸附劑及其製造方法
本發明係關於一種有機EL元件用水分吸附劑及其製造方法。
有機EL元件中所使用之有機發光材料存在因水分而發生劣化使壽命縮短之問題,自先前以來,為了吸收有機EL元件製造時殘留於元件內之水分或自外部浸入之水分,而配置吸濕性材料(吸水劑)。
關於吸水劑,由於被要求於密封後迅速吸附水分,故而使用有氧化鋇或氧化鍶、或者水分吸附速度加快之氧化鈣。並且,水分吸附速度加快之氧化鈣例如可如專利文獻1所揭示般,藉由在減壓條件下將氫氧化鈣燒成而得。
專利文獻1:日本專利第4387870號公報
然而,由於氧化鈣為強鹼性,故而當填充於樹脂等有機高分子材料使用時,有切斷高分子之鍵之虞,而存在僅可用於氟樹脂等一部分樹脂的問題。又,由於氧化鈣為親水性,故而存在難以填充於疏水性之樹脂等有機高分子材料的問題。
先前,作為解決該等問題之方法,已知有使粒子表面改質之方法。但關於本用途,卻會產生如下問題:若以脂肪酸等表面處理劑塗佈氧化鈣之表面,則雖可改質成疏水性,但會使得吸濕速度降低而失去原本之活性。
本發明係鑒於上述問題而完成者,其目的在於提供一種具有疏水性且吸濕速度不會降低之有機EL元件用水分吸附劑及其製造方法。
本發明人等為了達成以上目的經潛心研究後,結果發現於表面具有烷氧化物層之氧化鈣粒子藉由烷氧化物層所具有之烷基而具有疏水性且吸濕速度不會降低,從而達成本發明。即,本發明係關於一種有機EL元件用水分吸附劑,其特徵在於:以表面具有烷氧化物層之氧化鈣粒子為主成分。
又,本發明人等發現在醇(alcohol)的存在下對氧化鈣進行乾式粉碎,藉此進行微粒化可提高活性,且可獲得表面具有烷氧化物層之氧化鈣粒子,從而達成本發明。即,本發明係關於一種有機EL元件用水分吸附劑之製造方法,其特徵在於:於醇的存在下對氧化鈣進行乾式粉碎後再進行乾燥處理。
如上所述,根據本發明,可提供一種具有疏水性且吸濕速度不會降低之有機EL元件用水分吸附劑及其製造方法。
本發明之有機EL元件用水分吸附劑之特徵在於:以具有烷氧化物層之氧化鈣粒子為主成分。烷氧化物層存在於該氧化鈣粒子之表面,例如可列舉:甲氧化鈣、乙氧化鈣、丙氧化鈣、丁氧化鈣等層。又,本發明之有機EL元件用水分吸附劑之BET比表面積較佳為10~100 m2/g,更佳為15~100 m2/g,進而較佳為15~60 m2/g。又,平均粒徑較佳為0.2~10μm,更佳為0.5~3μm。又,體密度較佳為0.5~1.5g/cm3,更佳為0.7~1.2 g/cm3
關於本發明之有機EL元件用水分吸附劑具有高吸濕性的機制,可認為:若鑒於烷氧化物發生水解而分解為水及醇,並藉由醇與氧化鈣之反應而生成烷氧化物,則吸濕係經由烷氧化物層而自右向左發生下式(1)所示之反應,並藉由下式(1)所示之自左向右之反應而由醇及氧化鈣再度生成烷氧化物。又,剩餘之水分與粒子內部之氧化鈣發生反應而以氫氧化鈣之形態保持。
本發明之有機EL元件用水分吸附劑可藉由在醇的存在下對氧化鈣進行乾式粉碎後再進行乾燥處理而製造。
於本發明之有機EL元件用水分吸附劑之製造方法中,用作原料之氧化鈣之BET比表面積並無特別限制,較佳為0.1~60 m2/g,更佳為0.5~30 m2/g。又,氧化鈣之平均粒徑並無特別限制,較佳為1μm~5 mm。
於本發明之有機EL元件用水分吸附劑之製造方法中,作為所使用之醇,較佳為碳數1~6之醇,就易獲得性、使用容易性等方面而言,尤佳為碳數1~4之醇。具體而言,作為較佳之醇,可列舉:甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇等。該等可單獨使用或混合2種以上而使用。於本發明之有機EL元件用水分吸附劑之製造方法中,由於醇係用於形成烷氧化物層,故而其使用量較佳為相對於氧化鈣,為1~20質量%,更佳為5~15質量%。
於本發明之有機EL元件用水分吸附劑之製造方法中,乾式粉碎之方法並無特別限制,可使用:介質研磨機、旋轉球磨機、振動球磨機、行星式球磨機、搖滾式研磨機、塗料振盪器等粉碎裝置。粉碎裝置中較佳者為介質研磨機、搖滾式研磨機等使用金屬或樹脂、陶瓷介質作為介質之粉碎裝置。關於介質之材質,由於污染較少,而較佳為尼龍製或磨耗較少之氧化鋯製。再者,介質之大小可根據被粉碎物之粒徑而適當選擇。又,粉碎較佳為於惰性氣體環境中進行。作為惰性氣體,亦可列舉氦氣或氬氣等,就經濟性觀點而言,尤佳為於氮氣環境中進行。
再者,粉碎處理可以一階段進行,亦可變換介質直徑或粉碎裝置而以多階段進行粉碎。
於本發明之有機EL元件用水分吸附劑之製造方法中,乾燥處理係藉由加熱乾燥而進行,乾燥裝置可列舉:櫃式乾燥機、旋轉式乾燥機、振動式乾燥機等。關於具有烷氧化物層之氧化鈣粒子之乾燥,為了不要因與環境中之水蒸氣或二氧化碳反應而使烷氧化物層發生分解或生成氫氧化鈣或碳酸鈣,故較佳為一面向乾燥機內導入氮氣或氬氣等惰性氣體一面進行。加熱乾燥處理之溫度為烷氧化物層之分解溫度以下,較佳為80~180℃,更佳為120~170℃。
根據本發明,可製造一種具有疏水性且與普通CaO相比吸濕速度亦不降低之有機EL元件用水分吸附劑。進而,本發明之有機EL元件用水分吸附劑具有體密度大、易於填充於樹脂、吸油量小、可高填充於樹脂等優異之效果。再者,吸油量係評價粉末對樹脂之填充性之指標,該方法可用於填充性之評價(雜誌「工業材料」vol.39,No.1,p116-117(1991))。
因此,本發明之有機EL元件用水分吸附劑可分散於合成樹脂而成形為片狀、顆粒狀、板狀、膜狀而利用。該等成形物可有利地用作有機EL顯示器等電子機器用乾燥劑。作為合成樹脂,可使用聚烯烴(polyolefin)樹脂、聚丙烯酸系樹脂、聚丙烯請樹脂、聚醯胺樹脂、聚酯樹脂、環氧樹脂、聚碳酸酯樹脂及氟樹脂。
又,本發明之有機EL元件用水分吸附劑亦可收納於普通吸濕劑所使用之透濕性之袋子或容器來使用。又,本發明之有機EL元件用水分吸附劑可單獨地使用,亦可與其他吸濕性材料(例如矽膠或分子篩)併用。 實施例
以下,基於實施例具體地說明本發明,但其等並不限定本發明之目的。首先,將所獲得之CaO粉末之物性之測定方法示於以下。 [吸濕性評價]
測定經預先乾燥之培養皿之重量並記作[A(g)]。將作為測定對象之粉末約0.6 g裝入培養皿中,準確地稱量重量並記作[B(g)]。將裝有粉體之培養皿放入保持於24℃、相對濕度55%之恆溫恆濕槽中,測量120分鐘後之重量並記作[C(g)],藉由下式(2)而算出重量增加率。
重量增加率(%)=(C[g]-B[g])/(B[g]-A[g])×100(2) [吸油量之測定方法]
根據JIS K5101-13-2:2004顏料試驗方法-第13部:吸油量-第2節:熟亞麻仁油法而進行測定。根據於特定量之粉末試樣中滴加熟亞麻仁油並與熟亞麻仁油混合成之試樣成為可捲成螺旋形之狀態之最終滴加量,而求得吸油量(mL/100 g)。 [平均粒徑之測定方法]
使用乙醇作為試樣之分散溶劑,利用超音波均質機(MODEL US-150T,日本精機製作所(股)製造)進行3分鐘分散處理。使用雷射繞射式粒度分佈測定裝置(MICROTRAC HRA9320-X100,日機裝(股)製造)測定經分散之試樣之平均粒徑。 [BET比表面積之測定方法]
BET比表面積之測定係使用Monosorb(Quantachrome製造)藉由BET單點法而測定。 [對有機溶劑之分散性評價方法]
試樣對有機溶劑之分散性評價係使用正己烷而進行。於玻璃瓶中取正己烷5 ml,並加入試樣約0.1 g,振盪一分鐘後靜置並觀察30秒後溶液之情況。若試樣分散於己烷中呈現渾濁,則評價有機溶劑與試樣之分散性良好(○),若試樣於己烷中凝集而於己烷透明之狀態下沈澱,則評價有機溶劑與試樣之分散性較差(×)。 [體密度測定方法]
於填充有氮氣之套手工作箱內將試樣平穩地裝入容積4.4 cm3之石英容器(底面10 mm×10 mm,高度44 mm),並填充至冒尖。將粉之表面刮平後準確地稱量試樣重量並記作[D(g)],藉由下式(3)算出體密度。
體密度(g/cm3)=D(g)/4.4(cm3) (3) [FT-IR之測定方法]
FT-IR之測定係於傅里葉轉換紅外分光光度計(FT/IR-6100,日本分光(股)製造)組裝單次反射測定裝置(ATR PRO470-H)進行測定。所測定之波數之範圍為4000-400 cm-1。 [實施例1]
於100 mL密閉容器(聚丙烯製)加入直徑ψ 4.0 mm之氧化鋯製珠粒(NIKKATO(股)製造)120 g、於600℃燒成氫氧化鈣細粉末之造粒品所得之高比表面積氧化鈣粒狀品(BET比表面積16.5 m2/g,粒度2-3 mm)6 g、及乙醇0.45 g,並密封。以上之操作係於填充有氮氣之套手工作箱內進行,從而使本密閉容器填充有氮氣。利用搖滾式研磨機(SEIWA GIKEN(股))以700 rpm對自套手工作箱取出之本密閉容器進行4小時粉碎處理。處理後,於填充有氮氣之套手工作箱內使用網眼500μm之篩子分離氧化鋯製珠粒與CaO粉末。利用櫃式乾燥機於氮氣環境中對經分離、回收之CaO粉末進行150℃、18小時之乾燥處理,而獲得由烷氧化物覆蓋粒子表面之CaO粉末。藉由FT-IR確認於所獲得之CaO粉末表面存在烷氧化物層。所獲得之CaO粉末之物性示於表1。 [實施例2]
除使用高純度氧化鈣粉末(超高純度氧化鈣(CSQ),BET比表面積2.3m2/g,平均粒徑16.5μm,UBE MATERIALS(股)製造)代替高比表面積氧化鈣粒狀品以外,藉由與實施例1相同之方法進行製造。藉由FT-IR確認於所獲得之CaO粉末表面存在烷氧化物層。所獲得之CaO粉末之物性示於表1。 [實施例3]
除使用2-丙醇代替乙醇以外,藉由與實施例2相同之方法進行製造。藉由FT-IR確認於所獲得之CaO粉末表面存在烷氧化物層。所獲得之CaO粉末之物性示於表1。 [實施例4]
除使用1-丁醇代替乙醇以外,藉由與實施例2相同之方法進行製造。藉由FT-IR確認於所獲得之CaO粉末表面存在烷氧化物層。所獲得之CaO粉末之物性示於表1。 [比較例1]
使用高純度氧化鈣粉末(超高純度氧化鈣(CSQ),BET比表面積2.3 m2/g,平均粒徑16.5μm,UBE MATERIALS(股)製造)。該CaO粉末之物性示於表1。 [比較例2]
使用SIGMA-ALDRICH製造之氧化鈣(奈米粉末粒徑<160 nm(BET))。該CaO粉末之物性示於表1。 [比較例3]
以二乙醚40 mL溶解硬脂酸0.065 g。於該溶液添加SIGMA-ALDRICH製造之氧化鈣(奈米粉末粒徑<160 nm(BET))1.3g並混合10分鐘。於30℃對混合溶液進行12小時真空乾燥而去除溶劑。於填充有氮氣之套手工作箱內使用瑪瑙研缽對所回收之乾燥粉進行壓碎處理,而獲得以脂肪酸進行過表面處理之CaO粉末。所獲得之CaO粉末之物性示於表1。
圖1係表示實施例中之各CaO粉末之重量增加率(吸濕速度)之圖表。
权利要求:
Claims (2)
[1] 一種有機EL元件用水分吸附劑,其係以表面具有烷氧化物層之氧化鈣粒子為主成分。
[2] 一種有機EL元件用水分吸附劑之製造方法,於醇(alcohol)的存在下對氧化鈣進行乾式粉碎後再進行乾燥處理。
类似技术:
公开号 | 公开日 | 专利标题
TWI525045B|2016-03-11|Waterborne adsorbent for organic EL element and method of manufacturing the same
KR20180134363A|2018-12-18|고유한 복합체 나노입자를 포함하는 게터 물질 및 그의 제조방법
AU2017206539B2|2020-07-30|Treatment of surface-reacted calcium carbonate
Mallakpour et al.2017|Biosafe organic diacid intercalated LDH/PVC nanocomposites versus pure LDH and organic diacid intercalated LDH: synthesis, characterization and removal behaviour of Cd2+ from aqueous test solution
TWI618576B|2018-03-21|水分吸附劑及其製造方法
US20180236433A1|2018-08-23|Magnesium sulfate-based desiccant and method for producing same
US9683104B2|2017-06-20|Surface modification method of calcite
JP4387870B2|2009-12-24|粒状生石灰
CA2943499A1|2015-10-08|Powdered tobermorite-type calcium silicate-based material and method for producing same
JP6817235B2|2021-01-20|球状酸化マグネシウム及びその製造方法
KR20180101423A|2018-09-12|O2 포집 CaCO3 처리
WO2011086578A2|2011-07-21|Composite adsorbent for catalyst residues removal from polyolefin solution polymerization mixture
JP6759327B2|2020-09-23|酸化カルシウム粉末及び吸着剤並びに酸化カルシウム粉末の製造方法
JP6705710B2|2020-06-03|酸化カルシウム粉末の製造方法及び酸化カルシウム粉末
JP2003225560A|2003-08-12|新規な酸素吸収剤とその製造方法
Mohd Faiz et al.0|INFLUENCE OF CALCIUM HYDROXIDE CONCENTRATION ON THE SYNTHESIS NANOSIZED PRECIPITATED CALCIUM CARBONATE
同族专利:
公开号 | 公开日
US9115033B2|2015-08-25|
KR20140048260A|2014-04-23|
KR101925282B1|2018-12-06|
TWI525045B|2016-03-11|
CN103797896B|2016-04-13|
CN103797896A|2014-05-14|
JP5252327B2|2013-07-31|
US20140166927A1|2014-06-19|
JP2013020900A|2013-01-31|
WO2013008734A1|2013-01-17|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
CN104893362A|2015-06-15|2015-09-09|清华大学|一种表面疏水改性氧化钙的制备方法|FR2696445B1|1992-10-01|1994-12-16|Rennes Inst Nal Sciences Appli|Composition pour l'obtention de produits à base de chaux pure, application de cette composition et procédé pour sa mise en Óoeuvre.|
JPH06200245A|1992-12-28|1994-07-19|Toyo Alum Kk|誘電体被覆物およびその製造方法|
JP2004335136A|2003-04-30|2004-11-25|Canon Inc|有機発光素子|
JP2005216636A|2004-01-28|2005-08-11|Kyocera Corp|封止用カバーおよびエレクトロルミネッセンス装置|
KR100647598B1|2004-04-06|2006-11-23|삼성에스디아이 주식회사|유기 전계 발광 소자 및 그 제조방법|
JP4387870B2|2004-05-25|2009-12-24|宇部マテリアルズ株式会社|粒状生石灰|
CN100391662C|2005-09-12|2008-06-04|昆明理工恒达科技有限公司|低松比片状银粉的制备方法|
JP5213303B2|2006-01-17|2013-06-19|スリーエムイノベイティブプロパティズカンパニー|光硬化性吸湿性組成物及び有機el素子|
EP2039655A1|2006-06-02|2009-03-25|National University Corporation Tohoku Unversity|Porous calcium oxide particulate and porous calcium hydroxide particulate|
JP5422104B2|2007-03-30|2014-02-19|三菱重工業株式会社|凝集系構造体の製造方法および凝集系構造体の製造装置|
US7855509B2|2007-09-27|2010-12-21|Kabushiki Kaisha Toshiba|Transparent drying agent and organic electroluminescent device|US9229466B2|2011-12-31|2016-01-05|Intel Corporation|Fully integrated voltage regulators for multi-stack integrated circuit architectures|
US20150352521A1|2013-11-21|2015-12-10|Lg Chem, Ltd.|GETTERING AGENT, ABSORPTIVE FILM COMPRISING THE SAME AND ORGANIC ELECTRONIC DEVICE |
WO2016136715A1|2015-02-24|2016-09-01|積水化学工業株式会社|有機エレクトロルミネッセンス表示素子用封止剤|
JP2017124383A|2016-01-15|2017-07-20|双葉電子工業株式会社|乾燥剤、封止構造、及び有機el素子|
JP6692688B2|2016-04-28|2020-05-13|ダイニック株式会社|吸湿用シート|
JP6603614B2|2016-05-18|2019-11-06|双葉電子工業株式会社|乾燥剤組成物、封止構造、及び有機el素子|
JP6806490B2|2016-08-10|2021-01-06|双葉電子工業株式会社|捕水剤及びその製造方法、乾燥剤組成物、封止構造、並びに有機el素子|
JP6933580B2|2016-09-16|2021-09-08|積水化学工業株式会社|有機エレクトロルミネッセンス表示素子用封止剤|
KR101722544B1|2016-10-31|2017-04-03|이준민|흡습제의 제조방법 및 이에 의해 제조된 흡습제|
TW201918518A|2017-11-07|2019-05-16|日商双葉電子工業股份有限公司|乾燥劑、密封結構體及有機電致發光元件|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
JP2011155397A|JP5252327B2|2011-07-14|2011-07-14|有機el素子用水分吸着剤及びその製造方法|
[返回顶部]